Translate this website

LIKE US

Download Marketing Management Sheets From 
              ---LECTURE SHARE---
==LINKS WILL BE PUBLISHED SOON==
  1. Chapter 1
  2. Chapter 2
  3. Chapter 5 
  4. Chapter 8
  5. Chapter 9
  6. Chapter 10
  7. Chapter 11
  8. Chapter 14
  9. Chapter 17  

the transmission of messages from a sender to a large amount of people through various types of media, eg: newspapers, television etc.
the medium has to have the ability to reach a large audience.


Characteristics of Mass Communication

Five characteristics of mass communication have been identified by Cambridge University's John Thompson. Firstly, it "comprises both technical and institutional methods of production and distribution". This is evident throughout the history of the media, from print to the Internet, each suitable for commercial utility.

Secondly, it involves the "commodification of symbolic forms",as the production of materials relies on its ability to manufacture and sell large quantities of the work. Just as radio stations rely on its time sold to advertisements, newspapers rely for the same reasons on its space.

Mass communication's third characteristic is the "separate contexts between the production and reception of information", while the fourth is in its "reach to those 'far removed' in time and space, in comparison to the producers".

Mass communication, which involves "information distribution". This is a "one to many" form of communication, whereby products are mass produced and disseminated to a great quantity of audiences.

Characteristics of Mass Media

·         Communication is Mostly One Way

·         Audience Has Great Deal of Choice

·         Reach Large and Vast Audiences

·         Aim Messages to Attract Largest Audience Possible

·         Influence Society and Are, In Turn, Influenced by Society

Communication can occur via various processes and methods and depending on the channel used and the style of communication there can be various types of communication.


Types of Communication Based on Communication Channels


Based on the channels used for communicating, the process of communication can be broadly classified as verbal communication and non-verbal communication. Verbal communication includes written and oral communication whereas the non-verbal communication includes body language, facial expressions and visuals diagrams or pictures used for communication.
• Verbal Communication


Verbal communication is further divided into written and oral communication. The oral communication refers to the spoken words in the communication process. Oral communication can either be face-to-face communication or a conversation over the phone or on the voice chat over the Internet. Spoken conversations or dialogs are influenced by voice modulation, pitch, volume and even the speed and clarity of speaking. The other type of verbal communication is written communication. Written communication can be either via snail mail, or email. The effectiveness of written communication depends on the style of writing, vocabulary used, grammar, clarity and precision of language.
• Nonverbal Communication


Non-verbal communication includes the overall body language of the person who is speaking, which will include the body posture, the hand gestures, and overall body movements. The facial expressions also play a major role while communication since the expressions on a person’s face say a lot about his/her mood. On the other hand gestures like a handshake, a smile or a hug can independently convey emotions. Non verbal communication can also be in the form of pictorial representations, signboards, or even photographs, sketches and paintings.
Types of Communication Based on Style and Purpose


Based on the style of communication, there can be two broad categories of communication, which are formal and informal communication that have their own set of characteristic features.
• Formal Communication


Formal communication includes all the instances where communication has to occur in a set formal format. Typically this can include all sorts of business communication or corporate communication. The style of communication in this form is very formal and official. Official conferences, meetings and written memos and corporate letters are used for communication. Formal communication can also occur between two strangers when they meet for the first time. Hence formal communication is straightforward, official and always precise and has a stringent and rigid tone to it.
• Informal Communication


Informal communication includes instances of free unrestrained communication between people who share a casual rapport with each other. Informal communication requires two people to have a similar wavelength and hence occurs between friends and family. Informal communication does not have any rigid rules and guidelines. Informal conversations need not necessarily have boundaries of time, place or even subjects for that matter since we all know that friendly chats with our loved ones can simply go on and on.

No matter how good the communication system in an organisation is, unfortunately barriers can and do often occur. This may be caused by a number of factors which can usually be summarised as being due to physical barriers, system design faults or additional barriers.
Physical barriers  are often due to the nature of the environment.
Thus, for example, the natural barrier which exists, if staff are located in different buildings or on different sites.
Likewise, poor or outdated equipment, particularly the failure of management to introduce new technology, may also cause problems.
Staff shortages are another factor which frequently causes communication difficulties for an organisation.
Whilst distractions like background noise, poor lighting or an environment which is too hot or cold can all affect people's morale and concentration, which in turn interfere with effective communication.
System design  faults refer to problems with the structures or systems in place in an organisation.
 Examples might include an organisational structure which is unclear and therefore makes it confusing to know who to communicate with.
Other examples could be inefficient or inappropriate information systems, a lack of supervision or training, and a lack of clarity in roles and responsibilities which can lead to staff being uncertain about what is expected of them.
Attitudinal barriers  come about as a result of problems with staff in an organisation.
These may be brought about, for example, by such factors as poor management, lack of consultation with employees, personality conflicts which can result in people delaying or refusing to communicate, the personal attitudes of individual employees which may be due to lack of motivation or dissatisfaction at work, brought about by insufficient training to enable them to carry out particular tasks, or just resistance to change due to entrenched attitudes and ideas.


OTHER COMMON BARRIERS TO EFFECTIVE COMMUNICATION INCLUDE:
Psychological factors  such as people's state of mind. We all tend to feel happier and more receptive to information when the sun shines.
Equally, if someone has personal problems like worries about their health or marriage, then this will probably affect them.
Different languages  and cultures represent a national barrier which is particularly important for organisations involved in overseas business.
Individual linguistic ability  is also important. The use of difficult or inappropriate words in communication can prevent people from understanding the message.
Poorly explained or misunderstood messages can also result in confusion. We can all think of situations where we have listened to something explained which we just could not grasp.
Physiological barriers  may result from individuals' personal discomfort, caused, for example, by ill health, poor eye sight or hearing difficulties.
Presentation of information  is also important to aid understanding.
Financial Management and Policy Sheets Download Here (IIUC & IIUC-DC)

  1. Chapter 1
  2. Chapter 2 
  3. Chapter 3
  4. Chapter 3 (Copy)
  5. Chapter 6
A program is usually not limited to a linear sequence of instructions. During its process it may bifurcate, repeat code or take decisions. For that purpose, C++ provides control structures that serve to specify what has to be done by our program, when and under which circumstances.

With the introduction of control structures we are going to have to introduce a new concept: the compound-statement or block. A block is a group of statements which are separated by semicolons (;) like all C++ statements, but grouped together in a block enclosed in braces: { }:


{ statement1; statement2; statement3; }


Most of the control structures that we will see in this section require a generic statement as part of its syntax. A statement can be either a simple statement (a simple instruction ending with a semicolon) or a compound statement (several instructions grouped in a block), like the one just described. In the case that we want the statement to be a simple statement, we do not need to enclose it in braces ({}). But in the case that we want the statement to be a compound statement it must be enclosed between braces ({}), forming a block.


Conditional structure: if and else

The if keyword is used to execute a statement or block only if a condition is fulfilled. Its form is:


if (condition) statement


Where condition is the expression that is being evaluated. If this condition is true, statement is executed. If it is false, statement is ignored (not executed) and the program continues right after this conditional structure.
For example, the following code fragment prints x is 100 only if the value stored in the x variable is indeed 100:

1
2
if (x == 100)
  cout << "x is 100";


If we want more than a single statement to be executed in case that the condition is true we can specify a block using braces { }:

1
2
3
4
5
if (x == 100)
{
   cout << "x is ";
   cout << x;
}


We can additionally specify what we want to happen if the condition is not fulfilled by using the keyword else. Its form used in conjunction with if is:


if (condition) statement1 else statement2


For example:

1
2
3
4
if (x == 100)
  cout << "x is 100";
else
  cout << "x is not 100";


prints on the screen x is 100 if indeed x has a value of 100, but if it has not -and only if not- it prints out x is not 100.

The if + else structures can be concatenated with the intention of verifying a range of values. The following example shows its use telling if the value currently stored in x is positive, negative or none of them (i.e. zero):

1
2
3
4
5
6
if (x > 0)
  cout << "x is positive";
else if (x < 0)
  cout << "x is negative";
else
  cout << "x is 0";


Remember that in case that we want more than a single statement to be executed, we must group them in a block by enclosing them in braces { }.

Iteration structures (loops)


Loops have as purpose to repeat a statement a certain number of times or while a condition is fulfilled.

The while loop

Its format is:


while (expression) statement


and its functionality is simply to repeat statement while the condition set in expression is true.
For example, we are going to make a program to countdown using a while-loop:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// custom countdown using while

#include <iostream>
using namespace std;

int main ()
{
  int n;
  cout << "Enter the starting number > ";
  cin >> n;

  while (n>0) {
    cout << n << ", ";
    --n;
  }

  cout << "FIRE!\n";
  return 0;
}
Enter the starting number > 8
8, 7, 6, 5, 4, 3, 2, 1, FIRE!


When the program starts the user is prompted to insert a starting number for the countdown. Then the while loop begins, if the value entered by the user fulfills the condition n>0 (that n is greater than zero) the block that follows the condition will be executed and repeated while the condition (n>0) remains being true.

The whole process of the previous program can be interpreted according to the following script (beginning in main):

  1. User assigns a value to n
  2. The while condition is checked (n>0). At this point there are two posibilities:
    * condition is true: statement is executed (to step 3)
    * condition is false: ignore statement and continue after it (to step 5)
  3. Execute statement:
    cout << n << ", ";
    --n;

    (prints the value of n on the screen and decreases n by 1)
  4. End of block. Return automatically to step 2
  5. Continue the program right after the block: print FIRE! and end program.


When creating a while-loop, we must always consider that it has to end at some point, therefore we must provide within the block some method to force the condition to become false at some point, otherwise the loop will continue looping forever. In this case we have included --n; that decreases the value of the variable that is being evaluated in the condition (n) by one - this will eventually make the condition (n>0) to become false after a certain number of loop iterations: to be more specific, when n becomes 0, that is where our while-loop and our countdown end.

Of course this is such a simple action for our computer that the whole countdown is performed instantly without any practical delay between numbers.

The do-while loop


Its format is:


do statement while (condition);


Its functionality is exactly the same as the while loop, except that condition in the do-while loop is evaluated after the execution of statement instead of before, granting at least one execution of statement even if condition is never fulfilled. For example, the following example program echoes any number you enter until you enter 0.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// number echoer

#include <iostream>
using namespace std;

int main ()
{
  unsigned long n;
  do {
    cout << "Enter number (0 to end): ";
    cin >> n;
    cout << "You entered: " << n << "\n";
  } while (n != 0);
  return 0;
}
Enter number (0 to end): 12345
You entered: 12345
Enter number (0 to end): 160277
You entered: 160277
Enter number (0 to end): 0
You entered: 0


The do-while loop is usually used when the condition that has to determine the end of the loop is determined within the loop statement itself, like in the previous case, where the user input within the block is what is used to determine if the loop has to end. In fact if you never enter the value 0 in the previous example you can be prompted for more numbers forever.

The for loop


Its format is:


for (initialization; condition; increase) statement;


and its main function is to repeat statement while condition remains true, like the while loop. But in addition, the for loop provides specific locations to contain an initialization statement and an increase statement. So this loop is specially designed to perform a repetitive action with a counter which is initialized and increased on each iteration.

It works in the following way:

  1. initialization is executed. Generally it is an initial value setting for a counter variable. This is executed only once.
  2. condition is checked. If it is true the loop continues, otherwise the loop ends and statement is skipped (not executed).
  3. statement is executed. As usual, it can be either a single statement or a block enclosed in braces { }.
  4. finally, whatever is specified in the increase field is executed and the loop gets back to step 2.


Here is an example of countdown using a for loop:

1
2
3
4
5
6
7
8
9
10
11
// countdown using a for loop
#include <iostream>
using namespace std;
int main ()
{
  for (int n=10; n>0; n--) {
    cout << n << ", ";
  }
  cout << "FIRE!\n";
  return 0;
}
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!


The initialization and increase fields are optional. They can remain empty, but in all cases the semicolon signs between them must be written. For example we could write: for (;n<10;) if we wanted to specify no initialization and no increase; or for (;n<10;n++) if we wanted to include an increase field but no initialization (maybe because the variable was already initialized before).

Optionally, using the comma operator (,) we can specify more than one expression in any of the fields included in a for loop, like in initialization, for example. The comma operator (,) is an expression separator, it serves to separate more than one expression where only one is generally expected. For example, suppose that we wanted to initialize more than one variable in our loop:

1
2
3
4
for ( n=0, i=100 ; n!=i ; n++, i-- )
{
   // whatever here...
}


This loop will execute for 50 times if neither n or i are modified within the loop:



n starts with a value of 0, and i with 100, the condition is n!=i (that n is not equal to i). Because n is increased by one and i decreased by one, the loop's condition will become false after the 50th loop, when both n and i will be equal to 50.

Jump statements.


The break statement


Using break we can leave a loop even if the condition for its end is not fulfilled. It can be used to end an infinite loop, or to force it to end before its natural end. For example, we are going to stop the count down before its natural end (maybe because of an engine check failure?):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// break loop example

#include <iostream>
using namespace std;

int main ()
{
  int n;
  for (n=10; n>0; n--)
  {
    cout << n << ", ";
    if (n==3)
    {
      cout << "countdown aborted!";
      break;
    }
  }
  return 0;
}
10, 9, 8, 7, 6, 5, 4, 3, countdown aborted!


The continue statement


The continue statement causes the program to skip the rest of the loop in the current iteration as if the end of the statement block had been reached, causing it to jump to the start of the following iteration. For example, we are going to skip the number 5 in our countdown:

1
2
3
4
5
6
7
8
9
10
11
12
13
// continue loop example
#include <iostream>
using namespace std;

int main ()
{
  for (int n=10; n>0; n--) {
    if (n==5) continue;
    cout << n << ", ";
  }
  cout << "FIRE!\n";
  return 0;
}
10, 9, 8, 7, 6, 4, 3, 2, 1, FIRE!


The goto statement

goto allows to make an absolute jump to another point in the program. You should use this feature with caution since its execution causes an unconditional jump ignoring any type of nesting limitations.
The destination point is identified by a label, which is then used as an argument for the goto statement. A label is made of a valid identifier followed by a colon (:).

Generally speaking, this instruction has no concrete use in structured or object oriented programming aside from those that low-level programming fans may find for it. For example, here is our countdown loop using goto:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// goto loop example

#include <iostream>
using namespace std;

int main ()
{
  int n=10;
  loop:
  cout << n << ", ";
  n--;
  if (n>0) goto loop;
  cout << "FIRE!\n";
  return 0;
}
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!


The exit function


exit is a function defined in the cstdlib library.

The purpose of exit is to terminate the current program with a specific exit code. Its prototype is:

 
void exit (int exitcode);


The exitcode is used by some operating systems and may be used by calling programs. By convention, an exit code of 0 means that the program finished normally and any other value means that some error or unexpected results happened.

The selective structure: switch.

The syntax of the switch statement is a bit peculiar. Its objective is to check several possible constant values for an expression. Something similar to what we did at the beginning of this section with the concatenation of several if and else if instructions. Its form is the following:

switch (expression)
{
  case constant1:
     group of statements 1;
     break;
  case constant2:
     group of statements 2;
     break;
  .
  .
  .
  default:
     default group of statements
}


It works in the following way: switch evaluates expression and checks if it is equivalent to constant1, if it is, it executes group of statements 1 until it finds the break statement. When it finds this break statement the program jumps to the end of the switch selective structure.

If expression was not equal to constant1 it will be checked against constant2. If it is equal to this, it will execute group of statements 2 until a break keyword is found, and then will jump to the end of the switch selective structure.

Finally, if the value of expression did not match any of the previously specified constants (you can include as many case labels as values you want to check), the program will execute the statements included after the default: label, if it exists (since it is optional).

Both of the following code fragments have the same behavior:

switch exampleif-else equivalent
switch (x) {
  case 1:
    cout << "x is 1";
    break;
  case 2:
    cout << "x is 2";
    break;
  default:
    cout << "value of x unknown";
  }
if (x == 1) {
  cout << "x is 1";
  }
else if (x == 2) {
  cout << "x is 2";
  }
else {
  cout << "value of x unknown";
  }


The switch statement is a bit peculiar within the C++ language because it uses labels instead of blocks. This forces us to put break statements after the group of statements that we want to be executed for a specific condition. Otherwise the remainder statements -including those corresponding to other labels- will also be executed until the end of the switch selective block or a break statement is reached.

For example, if we did not include a break statement after the first group for case one, the program will not automatically jump to the end of the switch selective block and it would continue executing the rest of statements until it reaches either a break instruction or the end of the switch selective block. This makes unnecessary to include braces { } surrounding the statements for each of the cases, and it can also be useful to execute the same block of instructions for different possible values for the expression being evaluated. For example:

1
2
3
4
5
6
7
8
9
switch (x) {
  case 1:
  case 2:
  case 3:
    cout << "x is 1, 2 or 3";
    break;
  default:
    cout << "x is not 1, 2 nor 3";
  }


Notice that switch can only be used to compare an expression against constants. Therefore we cannot put variables as labels (for example case n: where n is a variable) or ranges (case (1..3):) because they are not valid C++ constants.

If you need to check ranges or values that are not constants, use a concatenation of if and else if statements.
Until now, the example programs of previous sections provided very little interaction with the user, if any at all. Using the standard input and output library, we will be able to interact with the user by printing messages on the screen and getting the user's input from the keyboard.

C++ uses a convenient abstraction called streams to perform input and output operations in sequential media such as the screen or the keyboard. A stream is an object where a program can either insert or extract characters to/from it. We do not really need to care about many specifications about the physical media associated with the stream - we only need to know it will accept or provide characters sequentially.

The standard C++ library includes the header file iostream, where the standard input and output stream objects are declared.


Standard Output (cout)

By default, the standard output of a program is the screen, and the C++ stream object defined to access it is cout.

cout is used in conjunction with the insertion operator, which is written as << (two "less than" signs).

1
2
3
cout << "Output sentence"; // prints Output sentence on screen
cout << 120;               // prints number 120 on screen
cout << x;                 // prints the content of x on screen 


The << operator inserts the data that follows it into the stream preceding it. In the examples above it inserted the constant string Output sentence, the numerical constant 120 and variable x into the standard output stream cout. Notice that the sentence in the first instruction is enclosed between double quotes (") because it is a constant string of characters. Whenever we want to use constant strings of characters we must enclose them between double quotes (") so that they can be clearly distinguished from variable names. For example, these two sentences have very different results:

1
2
cout << "Hello";  // prints Hello
cout << Hello;    // prints the content of Hello variable 


The insertion operator (<<) may be used more than once in a single statement:

 
cout << "Hello, " << "I am " << "a C++ statement";


This last statement would print the message Hello, I am a C++ statement on the screen. The utility of repeating the insertion operator (<<) is demonstrated when we want to print out a combination of variables and constants or more than one variable:

 
cout << "Hello, I am " << age << " years old and my zipcode is " << zipcode;


If we assume the age variable to contain the value 24 and the zipcode variable to contain 90064 the output of the previous statement would be:

 
Hello, I am 24 years old and my zipcode is 90064 


It is important to notice that cout does not add a line break after its output unless we explicitly indicate it, therefore, the following statements:

1
2
cout << "This is a sentence.";
cout << "This is another sentence."; 


will be shown on the screen one following the other without any line break between them:


This is a sentence.This is another sentence.


even though we had written them in two different insertions into cout. In order to perform a line break on the output we must explicitly insert a new-line character into cout. In C++ a new-line character can be specified as \n (backslash, n):

1
2
cout << "First sentence.\n";
cout << "Second sentence.\nThird sentence."; 


This produces the following output:


First sentence.
Second sentence.
Third sentence.


Additionally, to add a new-line, you may also use the endl manipulator. For example:

1
2
cout << "First sentence." << endl;
cout << "Second sentence." << endl; 


would print out:


First sentence.
Second sentence.


The endl manipulator produces a newline character, exactly as the insertion of '\n' does, but it also has an additional behavior when it is used with buffered streams: the buffer is flushed. Anyway, cout will be an unbuffered stream in most cases, so you can generally use both the \n escape character and the endl manipulator in order to specify a new line without any difference in its behavior.

Standard Input (cin).

The standard input device is usually the keyboard. Handling the standard input in C++ is done by applying the overloaded operator of extraction (>>) on the cin stream. The operator must be followed by the variable that will store the data that is going to be extracted from the stream. For example:

1
2
int age;
cin >> age; 


The first statement declares a variable of type int called age, and the second one waits for an input from cin (the keyboard) in order to store it in this integer variable.

cin can only process the input from the keyboard once the RETURN key has been pressed. Therefore, even if you request a single character, the extraction from cin will not process the input until the user presses RETURN after the character has been introduced.

You must always consider the type of the variable that you are using as a container with cin extractions. If you request an integer you will get an integer, if you request a character you will get a character and if you request a string of characters you will get a string of characters.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// i/o example

#include <iostream>
using namespace std;

int main ()
{
  int i;
  cout << "Please enter an integer value: ";
  cin >> i;
  cout << "The value you entered is " << i;
  cout << " and its double is " << i*2 << ".\n";
  return 0;
}
Please enter an integer value: 702
The value you entered is 702 and its double is 1404.


The user of a program may be one of the factors that generate errors even in the simplest programs that use cin (like the one we have just seen). Since if you request an integer value and the user introduces a name (which generally is a string of characters), the result may cause your program to misoperate since it is not what we were expecting from the user. So when you use the data input provided by cin extractions you will have to trust that the user of your program will be cooperative and that he/she will not introduce his/her name or something similar when an integer value is requested. A little ahead, when we see the stringstream class we will see a possible solution for the errors that can be caused by this type of user input.

You can also use cin to request more than one datum input from the user:

 
cin >> a >> b;


is equivalent to:

1
2
cin >> a;
cin >> b;


In both cases the user must give two data, one for variable a and another one for variable b that may be separated by any valid blank separator: a space, a tab character or a newline.

cin and strings

We can use cin to get strings with the extraction operator (>>) as we do with fundamental data type variables:

 
cin >> mystring;


However, as it has been said, cin extraction stops reading as soon as if finds any blank space character, so in this case we will be able to get just one word for each extraction. This behavior may or may not be what we want; for example if we want to get a sentence from the user, this extraction operation would not be useful.

In order to get entire lines, we can use the function getline, which is the more recommendable way to get user input with cin:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// cin with strings
#include <iostream>
#include <string>
using namespace std;

int main ()
{
  string mystr;
  cout << "What's your name? ";
  getline (cin, mystr);
  cout << "Hello " << mystr << ".\n";
  cout << "What is your favorite team? ";
  getline (cin, mystr);
  cout << "I like " << mystr << " too!\n";
  return 0;
}
What's your name? Juan Souli�
Hello Juan Souli�.
What is your favorite team? The Isotopes
I like The Isotopes too!


Notice how in both calls to getline we used the same string identifier (mystr). What the program does in the second call is simply to replace the previous content by the new one that is introduced.

stringstream

The standard header file <sstream> defines a class called stringstream that allows a string-based object to be treated as a stream. This way we can perform extraction or insertion operations from/to strings, which is especially useful to convert strings to numerical values and vice versa. For example, if we want to extract an integer from a string we can write:

1
2
3
string mystr ("1204");
int myint;
stringstream(mystr) >> myint;


This declares a string object with a value of "1204", and an int object. Then we use stringstream's constructor to construct an object of this type from the string object. Because we can use stringstream objects as if they were streams, we can extract an integer from it as we would have done on cin by applying the extractor operator (>>) on it followed by a variable of type int.

After this piece of code, the variable myint will contain the numerical value 1204.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// stringstreams
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

int main ()
{
  string mystr;
  float price=0;
  int quantity=0;

  cout << "Enter price: ";
  getline (cin,mystr);
  stringstream(mystr) >> price;
  cout << "Enter quantity: ";
  getline (cin,mystr);
  stringstream(mystr) >> quantity;
  cout << "Total price: " << price*quantity << endl;
  return 0;
}
Enter price: 22.25
Enter quantity: 7
Total price: 155.75


In this example, we acquire numeric values from the standard input indirectly. Instead of extracting numeric values directly from the standard input, we get lines from the standard input (cin) into a string object (mystr), and then we extract the integer values from this string into a variable of type int (quantity).

Using this method, instead of direct extractions of integer values, we have more control over what happens with the input of numeric values from the user, since we are separating the process of obtaining input from the user (we now simply ask for lines) with the interpretation of that input. Therefore, this method is usually preferred to get numerical values from the user in all programs that are intensive in user input.

Live Shout

About